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S T A B I L I T Y  O F  A P O L Y T R O P I C  C H E M I C A L  R E A C T O R  

T .  A .  B o d n a r  UDC 532.72 

The stability of the steady states of a flow-type chemical reactor has been analyzed previously in [1]. The 
adiabatic conditions of the process made it possible to reduce the system of two partial differential equations 
for temperature and concentration to one equation for temperature.  In the general case, with allowance for 
heat losses, which always occur in actual objects, the problem remains essentially two-dimensional, and this 
leads to a qualitatively new result: bifurcation of steady solutions gives rise to solutions that  are periodic 
in time. The qualitative difference between the solutions of the adiabatic and polytropic problems remains 
in the case of an ideal-mixing reactor [2]. Indeed, bifurcation of a steady state to a periodic-in-time flow 
is typical of many-dimensional problems formulated as systems of both ordinary differential equations and 
partial differential equations. In this case, a one-dimensional (in temperature) nonlinear problem formulated 
in infinite-dimensionai space can have, along with steady solutions, periodic solutions, which result from the 
secondary bifurcation due to the nonlinearity of the law of heat release. This is the case when the solution 
of an infinite-dimensional problem is at tracted to finite-dimensional space of dimension i> 2. If the solution 
is attracted to two-dimensional space, periodic solutions develop if the double real root of the characteristic 
cubic equation obtained in [1] splits into a pair of complex conjugate roots. The stability conditions for 
periodic-in-time solutions that  result from secondary bifurcation are presented in [3]. 

According to the procedure adopted in [1], the stability of a polytropic chemical reactor is studied by 
the projection method [4], although the problem considered can be reduced to the central variety. The latter 
method was applied to analysis of the cycle-birth bifurcation in a "brusselator" [5]. The absence of quadratic 
terms in unknown functions in the nonlinear mathematical  model of a "brusselator" simplifies an analysis 
considerably. However, in spite of this, application of the theorem on the central variety brings about, in our 
opinion, more cumbersome calculations in comparison with the projection method.  

In the s tatement  of the problem, all parameters are initially given in dimensional quantities, and the 
functions are specified. This is done to narrow the area of stability investigation, which follows from the 
physical restrictions on the parameters and their functions. 

1. The operation of a polytropic chemical reactor is described by the following system of differential 
equations [6]: 

OT(zh q) /Ot l  = ~eO2T(zl, t l ) /Oz 2 - wlOT(xl ,  t l) /Oxl + Qkoc;l~(T,  c) - ~1 (T); (1.1) 

Oc(x:, tl)/Ot: = O02c(x:, t:)/Ox 2 - wlOT(zl ,  t :) /0Xl - ko~(T, c). (1.2) 

Here xl is the coordinate; tl is time; T is the temperature; ae is the thermal diffusivity; c is the concentration; Q 
is the reaction-heat release per unit mass; E is the activation energy; R is the universal gas constant; k0 is the 
preexponential factor; cp is the specific heat; wl is the flow velocity; qo(T, c) is a function that  characterizes the 
heat-release intensity in the flow; and ~21 (T) is a heat-loss function. Without loss of generality we assume that 
a reaction of the Langmuir-Hinshelwood type with an Arrhenius heat release rate proceeds in the reactor, and 
the heat loss is a linear function of temperature: q0(T, c) = klc(xl ,  tl) exp ( - E ( R T ( x l ,  tl)) -1)( l+k2c(xl ,  tl)) -2 
and ~I(T)  = k3(T(xl , t l )  - T ( O ,  tl)), where kl, k2, and k3 are constants. In addition, we suppose that  the 
mechanisms of conductive heat transfer and material diffusion are the same and, hence, D -~ ee. 
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The temperature T(x l ,  tl) and the concentration c(xl, tl) satisfy the initial and boundary conditions 

T(z , , t , o )  = To, c(z , , t ,o)  = co; (1.3) 

T(O, t l ) = T o ,  c(0, t l ) = c 0 ,  O T ( l l , t l ) / O z l = O ,  Oc(l l , t l ) /Ozl  = 0 ,  (1.4) 

where tl0 is the initial t ime and 11 is the reactor length. 
For further analysis, we introduce the generally adopted time and length scales: t~ = 

c v R T 2 ( E Q k o ) - l e x p ( E ( R T o ) - l ) ,  and xa = (eeG) ~ and, using these scales, define the dimensionless 
coordinates and parameters: t = tlt'~ I, to = tlot-~ l, z = zlz-~ l, I = llz'~ 1, w = wltaz-~ I, ~3 = RT2o E - l ,  
a = kotaco 1, al = k sRT~E  -1, and 

V ~ ~ . 

U2 (c - co)c~ "1 exp (0.5wx) 

Let us write the functions ~(T, c) and ~I(T)  in the new variables in the form 

~(ux, u2) = co~:x(1 + u2 exp (-0.5~:~))(1 + k2co(1 + U2 exp (--0.5wx))) -2 

• exp (U1 exp ( -0 .5wx)( l  +/3U1 exp ( -0 .5wx) ) - l ) ,  

~I(U1) = otxU1 exp (--0.5wx). 

The function qo(U1, U2) can be represented in the vicinity of the point U = 0 as the series 
C O  O O  " " 1 

~(U1,U2) = E E ~pi,ju{u~ exp(-0.bwx), ~i,j = iij! exp(O'5wx)Oi+J~(O'O)/OU~OUJ2" 
i=l j=l 

Having grouped terms with the same degrees of U1 and U2, we now write system (1.1) and (1.2) with 
conditions (1.3) and (1.4) in dimensionless variables: 

ouIot = A U  + B ( U , U )  + C ( U , U , U )  + ~(0, 0) + o( Iv14) ;  (1.5) 

U(x, to) = 0; (1.6) 

OU(/, t) 0.5wU(/, t) = O. (1.7) u ( 0 ,  t) = 0, 0~ 

Let us represent the constant (~(0, 0), linear AU,  and nonlinear B(U,  U) and C(U,  U, U) operators as 

r 0) = ~(0, o) I 
- ~ ( 0 , 0 )  ' 

AU_~II 02/Ox2-l-~l'~ qO0'l I[11 U1 II 
--OcqO1,0 02/OX 2 -- OtqO0,1 -- 0.25W 2 U2 ' 

C ( U , U , U )  : (~3,0 ~P2,1 ~1,2 ~0,3 U31 U?U2 UIU22 U32 t 

where [[. II t is the transpose. 
The stability of a solution of Eq. (1.5) with conditions (1.6) and (1.7) can be established after solving 

the spectral problem 

~ u  = AU.  (1.8) 

With allowance for (1.6) and(1.7), the solutions of Eq. (1.8) are the eigenvectors 

l a'll Yn = bn 
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Here A,, are positive roots of the equation tan (AI) = 2Aw -1, arranged in ascending order: AI < A2 < . . . .  
The values of a .  and b. (n = 1, 2, . . . )  are calculated with accuracy to a constant factor, and the relation 
between them is found by solution of the equation (A - g . I ) U  = 0, where g,~ is the value of the parameter 
for A = A,~ and I is a 2 x 2 unit matrix. If we assume that a,~ = 1, then b. = (A~ +0.?5w 2 + ~  - ~ , , 0  - a.)9~,~, 
( n =  1, 2, . . .) .  

The spectrum of the operator A consists exclusively of the discrete eigenvalues a .  (n = 1, 2, . . .)  
satisfying the equations 

+ 0 . s J  - + 0.25w2)(  . + 0.25  - 9,,0) = o. (l.o) 

Among the real or complex conjugate roots of Eqs. (1.9) there is a pair of roots containing the largest 
real root or the largest real part. If these roots are real, analysis of the stability of equilibrium states is 
performed as in [1, 3]. In the case of complex conjugate roots, they have the largest real part for n = 1. Then, 
if Real = 0, the remMning part of the spectrum of the operator A is in the left-hand side of the complex 
plane. 

The first (n = 1) of Eqs. (1.9) has a pair of purely imaginary roots if and only if 9~,0 - a = 0, 
aalg0,1 - (A 2 + 0.25w2) 2 > 0, where a = 2A 2 + 0.Sw 2 + c~q00,1 + ~1. 

Denoting the real part of the eigenvalue al multiplied into 2 by # = Re~rl = 0.5(91,0 - a) and defining 
the frequency at the point # = 0 as w0 = Imcq = (ac~190,1 -(A~ + 0.25w2)2) ~ we conclude that the periodic 
solution of the equation OU/Ot = A U  that has the frequency w0 loses its stability rigorously when/~ passes, 
while growing, through the critical point/~ = 0. 

The eigenvector corresponding to the eigenvalue or 1 for/~ = 0 has the form 

II ' II 
To analyze the stability of the solution of the nonlinear equation (1.5), we first assume that the defect 

destroying a bifurcation at the point ~ = 0 is equal to zero: ~o(0, 0) = 0. 
Substitution of ~1,0 = 2~ + a into the expression for the operator A in the vicinity of the point # = 0 

gives the dependence A = A(~) = A(0) +/~0A(0) /0~,  which permits rewriting (1.5) with allowance for the 
adopted assumption 9(0, 0) = 0: 

OU/Ot = (A(0) +/z0A(0)/0/~)U + B(U ,  U) + C(U,  U, U) + O(IVl4). (1.10) 

The linear A(0) +/~cgA(0)/0# and nonlinear B(U,  U) and C(U,  U,  U)  operators are defined in the space of 
the eigenvectors Yn (n = 1, 2, . . . ) .  

2. At the critical point ~u = 0 two periodic-in-time independent solutions zl = Yl exp (is) and ~1 = 
:Y! exp (-is) (the over-bar designates complex conjugacy, s = wot) fork from the solution of the equation 
A U  = 0. The other solutions (z , ,  ~.,, n > 1), which correspond to the eigenvalues a ,  with a negative real 
part, decrease exponentially with time. 

The vectors Zl and ~.1 are 27r-periodic functions and belong to the zero space of the operator 

-ae~ -~oO / Os + 02 / Oz 2 - c~9o,1 - 0.25w 2 ' 

which is endowed with a scalar product on the rectangle (0, l) x (0, 2~r): 

2x I 
1 

0 0 

To construct a bifurcation solution of (1.10), we define the amplitude z as the scalar product e = (U, z~>, 
where z~ is the eigenvector of the conjugate operator 

II w~176 lq-O'25w2 --a~ II 
L] = 9 0 , 1  t~oO/O.s Jr 0 2 / O z  2 - o~90,1 - 0 . 2 5 w  2 ' 
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which acts on arbi trary vectors zi and zj so that  (Lszi, zj)  = (zi, L]z i ) .  Solving the equation L s U  = O, we 
find with accuracy to a constant  factor 3' that  the eigenvalue a~ corresponds to the vector z~ = y{ exp (is), 
where 

' II II Yl ='7 Tl + iwo sin(Alx).  

One can easily verify that  (zl,  ~.~) = (~1, z~) = 0 and (z . ,  z~) = 0 for n > 1. 
Now the 2~r-periodic solutions U( s ,  e) = U ( s  + 2~r, e), ~t(e), and w(e) of Eq. (1.10) can be represented 

as power series in ampl i tude  e: 

u ( ~ , ~ )  

u(~) 
~(~) - ~o 

U . ( ~ )  

f2 c n=l ~.I /zn 
03 n 

(2.1) 

Here U,~(s) = IIU1, ge.[lt; ~ ,  and w,, are functions and coefficients to be determined.  
Differentiating the expression 

;7., u.(~), ~)  n----1 " 

with respect to e, we find 
~.n--1 

n----1 

The definition of the ampl i tude  r remains valid if (Ux(s) ,  z~) = 1 and ( U , ( s ) ,  z~) = 0 for n > 1. The 
normalization condition (U~(s),  z~) = 1 makes it possible to find the constant 

Al~o0,a(w0 - irl) 

= ~ 0 ( ~ 0  2 + , ~ ) ( ~ l t  - sin (~ l t )  cos (~0)' 
and then 

z~ = ~0~0~ ~ 5 ~ ; 7 : : ~  (-Z~,0~(5;j0) , ~(~0 ~ +,~) 
Subst i tut ing series (2.1) into Eq. (1.10) and identifying the terms with independent  powers of ~ yields 

a sys tem of equations for the  unknown functions U , ( s )  and coefficients # ,  and w, :  

L , U ~  = 0; (2.2) 

LsU2 - 2 w l 0 U 1 / 0 s  + 2plOA(O)/OpU1 + B ( U a ,  Ua)  = 0; (2.3) 

L , U 3  - 3wlOU2/Os + 3#IOA(O)/OpU2 - 3w2OU1/Os + 3p2OA(O)/OktU1 (2.4) 

+ B ( U 1 , U 2 )  + C ( U 1 , U 1 , U 1 )  = 0, 

and for any n > 3 w e  have LsUn-nwn-IOU1/Os+npn-IOA(O)/OpU1 -nw1OUn-1/Os+n#lOA(O)/O#Un-1 + 
R~-2  = 0, where R,~-2 depends on Uk,  wk, and Pk (k < n - 1). 

Any linear combinat ion of the independent  vectors Zl and ~.1 that  are made to vanish by the operator  
Ls can be a solution of Eq. (2.2). The vectors Un belong to real space, and, therefore, Ux = bzl + bzl. 
In determining the constant  b we proceed from the fact that  the initial t ime to is not yet established, and 
is chosen so that  the number  bexp(iwoto) is real for s = wo(t + to). Then, without  toss of generality, we 
can write Ua = bexp (iw0t0)(Zl + ~1). Next ,  taking into account the normalization (U1, z~) = 1, we have 
bexp(iwoto) = 1, U1 = zl + zl or 

I II - r / c o s s - w 0 s i n s  " 
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The condition of solvability of Eq. (2.3), which follows from Fredholm's theorem on the alternative, is 
formulated as (LsU2, z;i  = 0, which allows us to obtain one equation in coefficients ~1 and ~1 in complex 
form: 

2#I(OA(0)/0/~U,,  z~) - 2 z , ( c 3 U l / 0 s ,  z~) + (B(U, ,  Ul ) ,  z~) = O. (2.5) 

Equation (2.5) splits into two equations in real form: 

2~1 (0A(0)/OttUl,  z;) + Re(B(U1, U1), z;) = 0, 

-2wlIm(OUl/Os, z~) + Im(B(U1, Ut) ,  z~) = 0. 

The real and imaginary parts of the scalar product (B(U~, U~), z~) vanish on integration over s, and, 
therefore, taking into account that  (U1, z~) = I and (OU1/Os, z;) = i, we have m = 0 and ~1 = 0. 

For gl = 0 and Wl = 0, the solution of Eq. (2.3) consists of the general solution of the equation 
LsU2 = 0 and any particular solution of the inhomogeneous equation 

LsU2 -- - B ( U 1 ,  U1). (2.6) 

At the same time, as was shown above, the condition (U2, z~) = 0 must be satisfied. The general solution 
U2g of the homogeneous equation LsU2 = 0 can be any linear combination U2g = "/lZl + 71Zl of the vectors 
Zl and zl, (71 is a constant). 

Before obtaining a particular solution U2p of the inhomogeneous equation (2.6), we represent the 
operator B(UI ,  U1) in the form 

B(UI, U1)=sin2(,~lx)exp(-O.Swx)]l /Xllsin2snuA12e~176 I] 
A21 sin 2s + A22 COS 2,S Jr- A23 sin s cos s ' 

where AH = 4~2~o0,2exp(0.5wz); A12 = 4(~o2,0 -- r/~o1,1 + q2~o0.2)exp (0.5wz); A13 = 4(2~oJ0~o0,2 -- 
W0~l,1)exp(0-5wz); and A2i = --aAli  (i = 1-3). The special form of the right-hand side of (2.6) and 
the method of separation of variables allow us to seek a particular solution of this equation as 

where 

N l = l l s i n 2 ( A l z )  cos2(Alz) sin(Alz)cos(,~lz)H; N 2 = l l s i n 2 s  cos2s s inscossH; 

M1 = IlaiJll, M2 = lib il[ and (i,  j = 1-3) are matrices of undetermined coefficients. 
Substitution of (2.7) into (2.6) yields a system of 18 linear algebraic equations in unknown coefficients 

aij and bq (i, j = 1-3). 
Thus, the sum U2 = U2g + U2p, in which U2g depends on the constant factor 71, is a solution of Eq. 

(2.3). To determine 3'1, we use the condition (U2, z~) = (U2g, z~) + (U2p, z~) = 0. Since (U2p, z;) vanishes 
upon integration over s, ( ~ ,  z~) = 0 and (zl, z~) = 1, this condition is satisfied if 71 = 0 and, consequently, 
U2 = U2p. It is worth noting that  if the function ~(U1, U2) is not equal identically to zero, i.e., co and kl 
are nonzero, there is no combination of the process parameters such that  U2 = 0. Indeed, if co # 0 and 
kl # 0, then ~1,1 # 0, and the function A13 equals zero only when ~o0,2 # 0, but then All  # 0. Therefore, 
B(U1, UI)  # 0 and U2 # 0. 

The condition of solvability of Eq. (2.4) (LsU3, z~) = 0 produces one equation in unknown coefficients 
~t2 and •2 in complex form 

3p2(cOA(O)/OpU1, z~) - 3oJ2(0U1/as, z;) + 3(B(U1, U2), z;) + (C(U1, U1, U1), z;) = 0 

or two equations in real form 

3#2(OA(O)/OpUx, z~) + 3Re(B(U1, U2), z;) + Re(C(U1, U1, Ul )  , z~) = 0; (2.8) 

-3w2Im(c3U1/c3s, z~) + 3Im(B(U1, U2), z~) + Im(C(U1,  UI,  U1), z;) = 0. (2.9) 
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The operators B(U1, U2) and C(U1, Ul ,  Ul )  are defined as 

--acP2,o -a~l,l  -a~o,2 

C ( U z ,  Uz,  U l )  : " ~o3,0 ha2,1 ~PI,2 r 
- -C~3,0  --OtW2,1 --OWI,2 --0c~0,3 

Taking into account that 

z l )  = + z l )  = 2, 

from Eqs. (2.8) and (2.9) we find 

~2 -----" 

r 2 _-- 

UI2U21 "Jr UIIU22 2U2, U2211 t, 

u 

( 0 u , / 0 s , z ; )  = <{zl - z ; )  = { 

Re[3(B(U, ,  U2), z~) + (C(U1, Ut ,  U,) ,  z~>]. 

6 

Im[3(B(Ui, U2), z~> + <C(UI, UI, U,), z~>] 

(2.10) 

(2.11) 

The solution of the bifurcation problem (1.6), (1.7), and (1.10) takes the form 

= 0 .5#2~  2, CO --~ WO n u 0 .5~2g 2, U --- U I ~  n u 0 . 5 U 2  ~2. (2.12) 

According to [4], the periodic-in-time solution of Eq. (1.10) is stable at the point U = 0 and # = 0 
if (O#(r > 0 and unstable if (O#(e)/Oe)OReal/O# < 0. Using the normalization ~ = 1, we 
conclude that the solution of Eq. (1.10) is stable if/~2 > 0 and unstable if/~2 < 0. 

The operator B(U,  U) is a second-order infinitesimal and, in agreement with the statement of [7], 
Eq. (1.10) has small nonzero solutions in the vicinity of the point /z = 0 for/~ < 0 or for # > 0. Since the 
operators A(U),  B(U,  U),  and C(U,  U, U) are smooth, the solution # ~ 0 is unique [7]. The stability bound 
of this solution is defined by the condition 

# - 0.5#2 = 0, (2.13) 

which is obtained from (2.12) at ~ = 1. The solution of the problem (1.6), (1.7), and (1.10) is stable if 
/~ - 0.5#2 < 0 and unstable if # - 0.5#2 > 0. 

Going back to Eq. (1.5) with ~(0,0) = const ~ 0, we note that since (~(0,0),  z~) = 0, the defect 
~I'(0, 0) does not affect the periodic solutions U(s) = U(s + 2nr)  of this equation, and, consequently, (2.13) 
defines the stability bound of the solutions of the problem (1.5)-(1.7). 

As an example, we shall consider the thermal stability of a polytropic chemical reactor for the following 
initial data: fl = 0.2, co = 1, kl = 1, k2 = 0, a = 0.6, al  = 0.1, and w = 0.2. The condition # = r - a = 0 
gives a = 1 and A1 = 0.374. In a linear approximation, this permits finding the critical reactor length I = 3.502 
[by the equation tan(All) - 2AllW -1 = 0], the parameters , / =  0.750, A13 = -0.775, A21 = 0, A22 = -1.080, 
and A23 = --0.465 and the vectors 

Zl = [11 - 0.75 + 0.194ill t sin(AlZ) exp (is), z~ = 110.353 + 1.365i 1.820ill t sin(AlZ) exp (is). 

As a result of calculation of the scalar products (B(UI,  U2), z~) and (C(U1, UI, U1), z~), we 
find Re(B(U,, U2), z~) -- 0.0137, Im(B(U,, U2), z~) -- -0.0387, Re(C(UI, U,, UI), z~) = -0.113, and 
Im(C(U, ,  U, ,  U,) ,  z~) = 0.104. 

Substitution of the results obtained into (2.10) and (2.11) leads to #2 = 0.012 and w2 = 0.004, and the 
solution of the nonlinear problem has the form 

U = U I ~ + 0 . 5 U 2 e  2, #=0 .006e  2, w=0 .194+0 .002~  2. (2.14) 

Since #2 > 0, the bifurcation solution (2.14) of the problem (1.5)-(1.7) is supercritical; it is stable if 
# < 0.006. The stability bound, which is determined from (2.14) in the region of small # for e = 1, gives the 
reactor length l = 3.531, all other things being equal. 
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